domingo, 15 de abril de 2007

Domingo

C.....G.....F..........F.C.............PRATOS.................COPOS
O.....A....A...........A.O
L.....R.....C..........C.L
H.....F....A...........A.H
E.....O....S...........S.E
R.....S.................G.R
E........................R.E
S........................A.S
colheres de............N.D
sobremesa.............D.E
..........................E.P
..........................S.A
............................U
Cortador de queijo, pegador de macarrão,
faca pequena, ...

quarta-feira, 4 de abril de 2007

Teoria do Módulo e Soma

A Teoria do Módulo e Soma consiste numa técnica de grande eficácia utilizada para quando não se sabe ou não se é possível realizar determinadas questões. Notadamente, ela aplica-se mais àquelas questões que envolvem cálculos; entretanto pode ser muito bem utilizada, indistintamente, em quaisquer tipos.

Passos:
  1. Analisar minuciosamente as questões e as alternativas;
  2. Re-analisar minuciosamente as questões e as alternativas;
  3. Eliminar aquelas visivelmente erradas (passo não fundamental);
  4. Tentar resolver a questão - importante guardar os valores achados (passo não fundamental também);
  5. Colocar os valores fornecidos no enunciado ou aqueles achados com o início da resolução da questão (passo 4) em Módulo (retirar tanto sinal e, a depender, também o expoente);
  6. Somá-los;
  7. Se o valor encontrado "coincidir" com algumas das alternativas, marcá-la e dar por encerrada tal questão. Caso o valor não seja igual, vide passo 8;
  8. Armado da Criatividade e da Imaginação (importante pesquisar também sobre a Teoria de Conspiração, que pode ser bastante útil neste passo) tentar estabelecer alguma relação entre o valor encontrado e aqueles apresentados nas alternativas ou a alternativa em si. Exemplo 1: valor encontrado = 28; alternativa B = 10. 2 + 8 = 10. Logo, resposta: letra B. Exemplo 2: valor encontrado = 5; letra E é a quinta letra do alfabeto. Logo, resposta: letra E.

Obs1.: Tal Teoria já foi devidamente provada e corroborada. Há testemunhos de pessoas que a utilizaram e acertaram a questão.

Obs2.: No caso de questões "não-exatas", deve-se seguir os passos 1, 2 e 3 e tentar estabelecer co-relações entre os dados e as alternativas (como o passo 8)... Uma sugestão seria a quantidade de letras e/ou palavras no enunciado e nas questões. Outra seria ainda substituir as letras das respostas por números (os da posição ocupada por essas no alfabeto) e somá-las... Dependendo do número, a resposta estará correta (alguns números a se destacar: 23, 32, 33).